759 research outputs found

    Structure of the Vacuolar H⁺-ATPase Rotary Motor Reveals New Mechanistic Insights

    Get PDF
    Vacuolar H+-ATPases are multisubunit complexes that operate with rotary mechanics and are essential for membrane proton transport throughout eukaryotes. Here we report a ∼1 nm resolution reconstruction of a V-ATPase in a different conformational state from that previously reported for a lower-resolution yeast model. The stator network of the V-ATPase (and by implication that of other rotary ATPases) does not change conformation in different catalytic states, and hence must be relatively rigid. We also demonstrate that a conserved bearing in the catalytic domain is electrostatic, contributing to the extraordinarily high efficiency of rotary ATPases. Analysis of the rotor axle/membrane pump interface suggests how rotary ATPases accommodate different c ring stoichiometries while maintaining high efficiency. The model provides evidence for a half channel in the proton pump, supporting theoretical models of ion translocation. Our refined model therefore provides new insights into the structure and mechanics of the V-ATPases

    Subunit positioning and stator filament stiffness in regulation and power transmission in the V1 motor of the manduca sexta V-ATpase

    Get PDF
    The vacuolar H(+)-ATPase (V-ATPase) is an ATP-driven proton pump essential to the function of eukaryotic cells. Its cytoplasmic V1 domain is an ATPase, normally coupled to membrane-bound proton pump Vo via a rotary mechanism. How these asymmetric motors are coupled remains poorly understood. Low energy status can trigger release of V1 from the membrane and curtail ATP hydrolysis. To investigate the molecular basis for these processes, we have carried out cryo-electron microscopy three-dimensional reconstruction of deactivated V1 from Manduca sexta. In the resulting model, three peripheral stalks that are parts of the mechanical stator of the V-ATPase are clearly resolved as unsupported filaments in the same conformations as in the holoenzyme. They are likely therefore to have inherent stiffness consistent with a role as flexible rods in buffering elastic power transmission between the domains of the V-ATPase. Inactivated V1 adopted a homogeneous resting state with one open active site adjacent to the stator filament normally linked to the H subunit. Although present at 1:1 stoichiometry with V1, both recombinant subunit C reconstituted with V1 and its endogenous subunit H were poorly resolved in three-dimensional reconstructions, suggesting structural heterogeneity in the region at the base of V1 that could indicate positional variability. If the position of H can vary, existing mechanistic models of deactivation in which it binds to and locks the axle of the V-ATPase rotary motor would need to be re-evaluated

    Scalar and vector Slepian functions, spherical signal estimation and spectral analysis

    Full text link
    It is a well-known fact that mathematical functions that are timelimited (or spacelimited) cannot be simultaneously bandlimited (in frequency). Yet the finite precision of measurement and computation unavoidably bandlimits our observation and modeling scientific data, and we often only have access to, or are only interested in, a study area that is temporally or spatially bounded. In the geosciences we may be interested in spectrally modeling a time series defined only on a certain interval, or we may want to characterize a specific geographical area observed using an effectively bandlimited measurement device. It is clear that analyzing and representing scientific data of this kind will be facilitated if a basis of functions can be found that are "spatiospectrally" concentrated, i.e. "localized" in both domains at the same time. Here, we give a theoretical overview of one particular approach to this "concentration" problem, as originally proposed for time series by Slepian and coworkers, in the 1960s. We show how this framework leads to practical algorithms and statistically performant methods for the analysis of signals and their power spectra in one and two dimensions, and, particularly for applications in the geosciences, for scalar and vectorial signals defined on the surface of a unit sphere.Comment: Submitted to the 2nd Edition of the Handbook of Geomathematics, edited by Willi Freeden, Zuhair M. Nashed and Thomas Sonar, and to be published by Springer Verlag. This is a slightly modified but expanded version of the paper arxiv:0909.5368 that appeared in the 1st Edition of the Handbook, when it was called: Slepian functions and their use in signal estimation and spectral analysi

    Heralded generation of entangled photon pairs

    Full text link
    Entangled photons are a crucial resource for quantum communication and linear optical quantum computation. Unfortunately, the applicability of many photon-based schemes is limited due to the stochastic character of the photon sources. Therefore, a worldwide effort has focused in overcoming the limitation of probabilistic emission by generating two-photon entangled states conditioned on the detection of auxiliary photons. Here we present the first heralded generation of photon states that are maximally entangled in polarization with linear optics and standard photon detection from spontaneous parametric down-conversion. We utilize the down-conversion state corresponding to the generation of three photon pairs, where the coincident detection of four auxiliary photons unambiguously heralds the successful preparation of the entangled state. This controlled generation of entangled photon states is a significant step towards the applicability of a linear optics quantum network, in particular for entanglement swapping, quantum teleportation, quantum cryptography and scalable approaches towards photonics-based quantum computing

    Slepian functions and their use in signal estimation and spectral analysis

    Full text link
    It is a well-known fact that mathematical functions that are timelimited (or spacelimited) cannot be simultaneously bandlimited (in frequency). Yet the finite precision of measurement and computation unavoidably bandlimits our observation and modeling scientific data, and we often only have access to, or are only interested in, a study area that is temporally or spatially bounded. In the geosciences we may be interested in spectrally modeling a time series defined only on a certain interval, or we may want to characterize a specific geographical area observed using an effectively bandlimited measurement device. It is clear that analyzing and representing scientific data of this kind will be facilitated if a basis of functions can be found that are "spatiospectrally" concentrated, i.e. "localized" in both domains at the same time. Here, we give a theoretical overview of one particular approach to this "concentration" problem, as originally proposed for time series by Slepian and coworkers, in the 1960s. We show how this framework leads to practical algorithms and statistically performant methods for the analysis of signals and their power spectra in one and two dimensions, and on the surface of a sphere.Comment: Submitted to the Handbook of Geomathematics, edited by Willi Freeden, Zuhair M. Nashed and Thomas Sonar, and to be published by Springer Verla

    A pre-Caloris synchronous rotation for Mercury

    Full text link
    The planet Mercury is locked in a spin-orbit resonance where it rotates three times about its spin axis for every two orbits about the Sun. The current explanation for this unique state assumes that the initial rotation of this planet was prograde and rapid, and that tidal torques decelerated the planetary spin to this resonance. When core-mantle boundary friction is accounted for, capture into the 3/2 resonance occurs with a 26% probability, but the most probable outcome is capture into one of the higher-order resonances. Here we show that if the initial rotation of Mercury were retrograde, this planet would be captured into synchronous rotation with a 68% probability. Strong spatial variations of the impact cratering rate would have existed at this time, and these are shown to be consistent with the distribution of pre-Calorian impact basins observed by Mariner 10 and MESSENGER. Escape from this highly stable resonance is made possible by the momentum imparted by large basin-forming impact events, and capture into the 3/2 resonance occurs subsequently under favourable conditions.Comment: Nature Geosci., 201

    Meeting Report: Hackathon-Workshop on Darwin Core and MIxS Standards Alignment

    Get PDF
    The Global Biodiversity Information Facility and the Genomic Standards Consortium convened a joint workshop at the University of Oxford, 27–29 February 2012, with a small group of experts from Europe, USA, China and Japan, to continue the alignment of the Darwin Core with the MIxS and related genomics standards. Several reference mappings were produced as well as test expressions of MIxS in RDF. The use and management of controlled vocabulary terms was considered in relation to both GBIF and the GSC, and tools for working with terms were reviewed. Extensions for publishing genomic biodiversity data to the GBIF network via a Darwin Core Archive were prototyped and work begun on preparing translations of the Darwin Core to Japanese and Chinese. Five genomic repositories were identified for engagement to begin the process of testing the publishing of genomic data to the GBIF network commencing with the SILVA rRNA database

    Observation of eight-photon entanglement

    Full text link
    Using ultra-bright sources of pure-state entangled photons from parametric down conversion, an eight-photon interferometer and post-selection detection, we demonstrate the ability to experimentally manipulate eight individual photons and report the creation of an eight-photon Schr\"odinger cat state with an observed fidelity of 0.708±0.0160.708 \pm 0.016.Comment: 6 pages, 4 figure
    corecore